Replace all NaN values with 0's in a column of Pandas dataframe

Pandas

import modules

import pandas as pd
import numpy as np

create dummy dataframe

raw_data = {'name': ['Willard Morris', 'Al Jennings', 'Omar Mullins', 'Spencer McDaniel'],
'age': [20, 19, 22, 21],
'favorite_color': ['blue', 'red', 'yellow', "green"],
'grade': [88, 92, 95, 70]}
df = pd.DataFrame(raw_data, index = ['Willard Morris', 'Al Jennings', 'Omar Mullins', 'Spencer McDaniel'])
df
age favorite_color grade name
Willard Morris 20 blue 88 Willard Morris
Al Jennings 19 red 92 Al Jennings
Omar Mullins 22 yellow 95 Omar Mullins
Spencer McDaniel 21 green 70 Spencer McDaniel

Create some NaN values in the dataframe

#First, we have to create the NaN values
df = df.replace(20,np.NaN)
df = df.replace(70,np.NaN)
df
age favorite_color grade name
Willard Morris NaN blue 88.0 Willard Morris
Al Jennings 19.0 red 92.0 Al Jennings
Omar Mullins 22.0 yellow 95.0 Omar Mullins
Spencer McDaniel 21.0 green NaN Spencer McDaniel

Replace the NaN values in the dataframe (with a 0 in this case)

#Now, we can replace them
df = df.fillna(0)
df
age favorite_color grade name
Willard Morris 0.0 blue 88.0 Willard Morris
Al Jennings 19.0 red 92.0 Al Jennings
Omar Mullins 22.0 yellow 95.0 Omar Mullins
Spencer McDaniel 21.0 green 0.0 Spencer McDaniel